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RESEARCH PAPER

Extracting thermodynamic properties from van ’t Hoff plots with emphasis on 
temperature-sensing ion channels
Jakob T. Bullerjahn a and Sonya M. Hanson b

aDepartment of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany; bCenter for Computational Biology & Center 
for Computational Mathematics, The Flatiron Institute, New York, NY, USA

ABSTRACT
Transient receptor potential (TRP) ion channels are among the most well-studied classes of 
temperature-sensing molecules. Yet, the molecular mechanism and thermodynamic basis for 
the temperature sensitivity of TRP channels remains to this day poorly understood. One hypoth-
esis is that the temperature-sensing mechanism can simply be described by a difference in heat 
capacity between the closed and open channel states. While such a two-state model may be 
simplistic it nonetheless has descriptive value, in the sense that it can be used to compare overall 
temperature sensitivity between different channels and mutants. Here, we introduce a mathema-
tical framework based on the two-state model to reliably extract temperature-dependent thermo-
dynamic potentials and heat capacities from measurements of equilibrium constants at different 
temperatures. Our framework is implemented in an open-source data analysis package that 
provides a straightforward way to fit both linear and nonlinear van ’t Hoff plots, thus avoiding 
some of the previous, potentially erroneous, assumptions when extracting thermodynamic vari-
ables from TRP channel electrophysiology data.
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Introduction

An organism’s ability to sense its environment is 
crucial to its survival. One of the most well-studied 
families of biological temperature sensors in humans 
and other eukaryotes is the transient receptor poten-
tial (TRP) family of ion channels [1]. Members of 
this family have temperature sensitivity across the 
biologically relevant range of temperatures, but the 
most well-known are the heat and capsaicin-sensi-
tive TRPV1 [2] in the TRPV subfamily, and the cold 
and menthol sensitive TRPM8 [3,4] in the TRPM 
subfamily. Hypotheses about the principles guiding 
the temperature-sensitivity of TRP channels were 
already being postulated within a few years of their 
discovery, with proposed mechanisms relating to 
phenomena from voltage-sensing to elongations of 
open channel burst times [5,6]. However, while these 
molecules have been identified as intrinsically sensi-
tive to temperature [7] and playing a critical role as 
temperature sensors in our nervous system [8–10], 
we still do not understand the molecular and ther-
modynamic mechanism(s) that dictates their tem-
perature-dependent activation.

One characteristic of TRP ion channels that 
seems clear are the large positive enthalpy differ-
ences between states for heat-sensitive TRPs like 
TRPV1 [5,11] and large negative enthalpy differ-
ences for cold-sensitive TRPs like TRPM8 
[11,12]. Entropy and enthalpy differences 
between the open and closed states of a channel 
can be extracted from linear fits to the logarithm 
of the equilibrium constant Keq as a function of 
the reciprocal temperature 1=T if said thermody-
namic potentials are independent of temperature. 
However, as is well known in the literature of 
physical biochemistry, large conformational 
changes in proteins are usually accompanied by 
changes in their heat capacities, which leads to 
temperature-dependent enthalpies and entropies 
[13]. This is the premise of a model-free frame-
work proposed by Clapham and Miller [11], 
which can explain both cold and heat-sensitive 
changes in the equilibrium constant. Recently 
[14], it was demonstrated that a generalized ver-
sion of the framework by Clapham and Miller is 
able to capture a broad range of experimentally- 
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consistent channel behaviors, which were pre-
viously only attributed to elaborate multi-state 
models. While it remains debated whether tem-
perature-dependent gating in channels is also 
accompanied by observable changes in heat capa-
city [15], this is the main mechanism to induce 
temperature dependence in the relevant thermo-
dynamic potentials.

Here, we embrace the approach of Clapham 
and Miller [11], and introduce a procedure to 
reliably extract temperature-dependent thermo-
dynamic potentials and heat capacities from 
equilibrium constant measurements performed 
at different temperatures. We thereby assume 
that a TRP channel can, to a first approximation, 
be described as a two-state system, which may 
not provide the same mechanistic insight as 
more involved models [16], but has the benefit 
of being universally applicable and allows for a 
direct comparison of thermodynamic variables 
obtained for different ion channels or the same 
channel at differing experimental conditions. 
Our theory is implemented in an open-source 
data analysis package [17] written in Julia [18], 
and should provide practitioners a straightfor-
ward way to fit linear and nonlinear van ’t 
Hoff plots, thus avoiding previous potentially 
false assumptions about the nature of tempera-
ture sensors. To facilitate the use of our data 
analysis script, we offer a link on our GitHub 
page [17] to an interactive cloud environment, 
where the code can be run without any prior 
installation. Users can upload their own data 
and analyze it within this cloud environment, 
where all uploaded data gets purged as soon as 
the session is closed.

The paper is structured as follows. At the begin-
ning of the Theory section, we list the thermody-
namic relations relevant to our discussion, and 
briefly review their common use in the literature 
of temperature sensors. A subsection titled “Spline 
fitting of discrete data points” introduces cubic 
splines as continuously differentiable functions 
used to fit discrete measurements of lnðKeqÞ. 
Under the assumption of a two-state model, the 
differentiability of splines allows us to calculate 
robust estimates for the thermodynamic potentials 

ΔHðTÞ and ΔSðTÞ, and the associated heat capa-
city difference ΔCpðTÞ. To avoid overfitting, we 
rely on a Bayesian information criterion (BIC) 
[19] to penalize splines with many degrees of free-
dom, as described in the subsection “Model selec-
tion”. For illustrative purposes, we apply our data 
analysis package to two distinct data sets in the 
Results and discussion, and the Conclusions pro-
vide a summary of our results.

Theory

One of the simplest ways to model a TRP channel 
is to treat it as a two-state system. Every channel in 
an ensemble of channels can then either be in the 
open or closed state, such that the composition of 
the ensemble is encoded in the equilibrium con-
stant Keq:

In electrophysiological experiments the charge 
current through a single channel or a collection 
of channels is measured at different temperatures, 
which can be used to calculate the so-called “open 
probability” P, i.e. the probability of finding a 
channel in the open state. The equilibrium con-
stant Keq and the open probability P are related via

for a two-state system. Note that macroscopic 
ionic currents are subject to a multitude of addi-
tional sources of variability that can predominate 
at the temperature extremes, where channel activ-
ity is either very low or near-maximal. Because the 
quality of the associated P and Keq-estimates is 
directly affected, we recommend users to carefully 
select the temperature range of the data to be fitted 
to avoid contributions from sources of signal 
variability unrelated to channel gating.

Thermodynamic description

Thermodynamics tells us, on the one hand, that 
the differentials of enthalpy H and entropy S are 
related via
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for systems at constant pressure, where T denotes 
the absolute temperature. On the other hand, it 
can be shown that the heat capacity Cp at constant 
pressure satisfies

where @=@T denotes a partial derivative with 
respect to T and the index of the bracket reveals 
which quantity is being held constant (in this case 
it is the pressure p). We therefore conclude that 
the enthalpy and entropy differences between two 
metastable states must be integral functions of the 
heat capacity difference ΔCp ¼ Cstate 2

p � Cstate 1
p 

between the states, i.e.

for some arbitrary reference temperature T0. 
Note that ΔHðTÞ and ΔSðTÞ are independent of 
T whenever ΔCpðTÞ ¼ 0, e.g. for bistable systems 
whose states have the same heat capacity. 
However, in the case of protein folding, we 
know that large heat capacity differences exist 
between their folded and unfolded state [13].

Another thermodynamic potential of interest is 
the Gibbs free energy, which is given by

It can be related to the equilibrium constant Keq of 
the two-state system via the fundamental relation 
of chemical thermodynamics, namely

where R ¼ 8:31446261815324 J mol−1 K−1 denotes 
the molar gas constant. The logarithm of the equi-
librium constant and its derivative with respect to 
T therefore have the form

where the latter is the well-known van ’t Hoff 
equation, which is sometimes also written as 
follows:

Equations (6) and (8) reveal that a so-called van ’t 
Hoff plot, where lnðKeqÞ is plotted against the 
reciprocal of the absolute temperature T, will be 
linear whenever ΔH and ΔS are constant with 
respect to temperature. The thermodynamic 
potentials can then be read off the slope and inter-
cept of lnðKeqÞ, respectively. This convenient fact 
often seems to guide the decision of practitioners 
to fit their data to straight lines, even when the van 
’t Hoff plot is highly nonlinear (see, e.g. Refs. [12] 
and [20]), which can be an indication for tempera-
ture-dependent behavior. Overall, it is important 
to note that Eqs. (7) and (8) are valid for all 
functions ΔHðTÞ and ΔSðTÞ of the form given in 
Eq. (3), and not just constant thermodynamic 
potentials.

A popular empirical measure of temperature 
sensitivity is Q10, which is used to characterize 
temperature sensitivity in electrophysiological 
experiments on TRP channels [21,22]. It is defined 
as the ratio of Keq measured at two temperatures 
that are 10K apart, i.e.

The reason for its wide-spread use is the fact that 
on a logarithmic scale it approximately reproduces 
the van ’t Hoff equation, i.e.

and can therefore be used to estimate ΔHðTÞ. 
Again, it is common practice to assume that ΔH is 
temperature-independent and lnðQ10Þ is therefore 
only evaluated at a single temperature T, which 
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can lead to arbitrary and skewed results whenever 
ΔHðTÞ ¼ const: is not satisfied.

Here, we call for a different approach to extract 
thermodynamic information from measured 
Keq-values, without any ad-hoc assumptions. 
Instead of performing a linear fit of lnðKeqÞ plotted 
against T� 1, we propose to fit the data points using 
piecewise continuous polynomials and extracting 
the corresponding potentials ΔHðTÞ, ΔSðTÞ and 
ΔGðTÞ via Eqs. (4), (5) and (7) [or, equivalently, 
Eq. (8)], as discussed in the next subsection. In 
cases, where ΔHðTÞ and ΔSðTÞ vary strongly with 
the temperature, this novel approach also allows us 
to estimate the change in heat capacity ΔCp.

Spline fitting of discrete data points

At a fixed temperature T, a measured value of 
lnðKeqÞ can be used to calculate the corresponding 
free-energy difference ΔGðTÞ via Eq. (5). The asso-
ciated potentials ΔHðTÞ and ΔSðTÞ then follow 
from Eqs. (7) and (4), respectively, and ΔCp is 
given by Eq. (2). However, Eqs. (2) and (7) require 
us to calculate the first and second derivative of 
lnðKeqÞ with respect to T, and this can be some-
what tricky for discrete points, because direct 
numerical differentiation amplifies the noise in 
the data. To circumvent this problem, we propose 
to fit a so-called cubic spline [23] to the data, 
which is a twice continuously differentiable func-
tion made up of third-order polynomials. Our 
choice of a fit function is motivated by the fact 
that splines are generally preferred over ordinary 
polynomials when fitting nonlinear data, because 
the latter have many undesirable properties, e.g. 
the fit in one region can influence the behavior in 
other regions, leading to extreme oscillations at 
high polynomial orders. Ordinary polynomials 
also cannot fit certain functional forms, such as 
logarithmic functions and functions with sharp 
slope changes. The order of the splines should be 
cubic to guarantee a continuous second derivative, 
while keeping the number of fit parameters to a 
minimum, where the former is needed for the 
proper estimation of ΔCp.

A cubic spline is a piecewise continuous 
function

made up of third-order polynomials of the form

which are joined together in the spline knots si. It 
satisfies the continuity conditions

where the notation S0ðxÞ ¼ dSðxÞ=dx and 
S00ðxÞ ¼ d2SðxÞ=dx2 was introduced to abbreviate 
the expressions. We also require some appropriate 
boundary conditions, e.g. the natural boundary 
conditions

which are a popular choice, because they reduce 
the number of free parameters by two and lead to 
a less divergent behavior of the spline beyond the 
edge knots s0 and sN . Equations (11) and (12) 
constrain the values of the spline coefficients aðiÞn , 
such that only N þ 1 of them can be varied 
independently.

In our fitting procedure, the edge knots are held 
fixed to define a finite interval ½s0; sN�, on which 
the “inner” knots fs1; . . . ; sN� 1g are allowed to 
vary. We also vary the values fSðsiÞg

N
i¼0 of the 

splines at the knots (see Figure 1). The best fit of 
SðxÞ to the data fxm; ymg

M
m¼0 minimizes the sum 

of squared residuals between the data points and 
the spline, i.e.

where σm denotes the standard error of ym. 
Here, we consider ym ¼ lnðKeqðxmÞÞ for either a 
linear (xm ¼ Tm) or reciprocal temperature scale 
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(xm ¼ 1=Tm), and set the values of s0 and sN equal 
to the lowest and highest values of xm found in the 
data set, respectively. The reason why we consider 
both scales is because one cannot distinguish 
between a linear and reciprocal temperature 
dependence for the temperature ranges realized 
in electrophysiological experiments (see also 
Figure 2).

Evaluating SðxðTÞÞ for the parameters that 
minimize Eq. (13) therefore gives the best estimate 
of lnðKeqðTÞÞ, which can be used to extract the 
heat capacity difference ΔCpðTÞ and the thermo-
dynamic potentials ΔGðTÞ, ΔHðTÞ, and ΔSðTÞ as 
follows:

Note that for x ¼ T we have dx=dT ¼ 1, whereas 
the reciprocal relation x ¼ 1=T gives 
dx=dT ¼ � T� 2 for which the first term of Eq. 
(17) vanishes.

Model selection

The choice between a linear and a reciprocal fit, 
as well as the number of spline knots N þ 1, gives 
rise to a multitude of models that fit the data set 
to varying degree. For a fixed N, one can distin-
guish between the qualities of a linear and a 
reciprocal fit by comparing their corresponding 
χ2 values, but if N is allowed to vary then models 
with N � 1 will always be preferred. We there-
fore propose the use of an information criterion 
[19] to penalize models with too many fit para-
meters. By interpreting Eq. (13) as a negative log- 
likelihood for Gaussian distributed residuals, we 
obtain the following BIC: 

where M is the number of data points as defined 
in the previous section. Equation (18) is evaluated 
using the optimal values for the 2N spline para-
meters fsig

N� 1
i¼1 and fSðsiÞg

N
i¼0 that minimize χ2 

[Eq. (13)], resulting in the minimum value χ2
min. 

The model that best fits the data, while avoiding 
overfitting, minimizes BICðNÞ with respect to N.

Figure 1. Visualizing the principle of spline fitting. When fitting a cubic spline SðxÞ to some data points fxm; ymg
M
m¼0, we exploit the 

fact that for every set of knot coordinates ðs0;Sðs0ÞÞ; ðs1;Sðs1ÞÞ; . . . ; ðsN;SðsNÞÞ (blue circles) there exists a unique cubic spline 
(blue solid lines) satisfying the boundary conditions in Eq. (12). Thus, by varying the knot coordinates (black arrows), we can change 
the shape of the spline to minimize χ2 in Eq. (13). Note that the edge knots at x ¼ s0 and x ¼ sN can only be varied in y-direction, 
whereas the “inner” knots are allowed to take arbitrary x-values within the interval ½s0; sN�. 
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Our data analysis package automatically varies 
N, finds the associated optimal parameter values 
that minimize χ2, and subsequently calculates the 
corresponding BIC-value. It finally returns the 
model and associated parameter values that best 
fit the data at hand.

Extension to multi-state models

In principle, our data-fitting approach can be 
extended to (and used to generalize) models with 
multiple states, such as the ones presented in Ref. 
[16], by replacing Eq. (1) with an expression PðTÞ
for the open probability involving multiple spline 
functions SðkÞðxðTÞÞ with k ¼ 1; 2; . . .. The fitting 
must then be performed on the level of P, instead 
of lnðKeqÞ, which implies that Eq. (13) gets 
replaced with

where Pm and ~σm are the mean and associated 
standard error of the measured open probability 
at temperature Tm. The corresponding BIC takes 
the form

where NðkÞ þ 1 is the number of spline knots 
in SðkÞðxÞ.

For a concrete example, consider the four-state 
model in Ref. [16], where the open probability is 
given by

and the coefficients L, C, and J are related to the 
equilibrium constants between the two open (“O”) 
and two closed (“C”) states as follows:

This model can be generalized by replacing L, C, 
and J with expðSðkÞðxÞÞjk¼1;2;3, respectively, if all 
equilibrium constants are assumed to be tempera-
ture dependent. After fitting the data in analogy to 
the two-state case, Eqs. (14) to (17) can then be 
evaluated by replacing SðxÞ with Sð1ÞðxÞ, Sð3ÞðxÞ, 
Sð1ÞðxÞ þ Sð2ÞðxÞ, and Sð2ÞðxÞ þ Sð3ÞðxÞ to extract 
the thermodynamic potentials and heat capacity 
differences related to all the different equilibrium 
constants.

Even though the generalization to multiple 
states is fairly straight-forward, our data analysis 

f (T )
g(T ) f (T )g(T )

Figure 2. Distinguishing between linear and reciprocal functions on physiologically relevant temperature scales is impossible. 
(a) A linear function fðTÞ ¼ aþ bT , evaluated at discrete T-values and perturbed by small noise (blue circles), is plotted next to 
a reciprocal noisy function gðTÞ ¼ c � d=T (red squares) on a temperature scale ranging from 0 to 100. Both functions appear 
linear, because the absolute temperature is not varied by orders of magnitude to reveal the nonlinearity of gðTÞ. (b) Same data 
as in (a) plotted on a reciprocal temperature scale. Again, both functions seem linear in 1=T , although only gðTÞ truly is. Insets: 
same data as in (a) and (b) plotted on a wider temperature scale to visualize the linear and reciprocal trends of fðTÞ (blue solid 
line) and gðTÞ (red dashed line), respectively.
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package currently only supports a two-state 
description.

Results and discussion

For illustrative purposes, we applied the data ana-
lysis package to two previously published data sets, 
one for the warm-sensitive TRPV3 channel [20], 
and another for the heat and capsaicin-sensitive 
TRPV1 channel [5]. Each data set was analyzed by 
performing a van ’t Hoff fit of measured values of 
lnðKeqÞ for different temperatures T to extract heat 
capacity differences and thermodynamic poten-
tials, as described in the subsections “Spline fitting 
of discrete data points” and ”Model selection” 
above. Here, we deliberately avoid a direct com-
parison with the results of the associated publica-
tions, as it is not our intention to question their 
conclusions, but to demonstrate how our data 
analysis package works in practice.

In the case of the TRPV3 channel, we consid-
ered the measured open probabilities P that are 
tabulated in the source data associated with the 
extended data Figure 1 in Ref. [20]. For each 
temperature Tm, we calculated the sample mean 
and variance of Pm, i.e.

where PðnÞm denotes the nth measurement (of Nm in 
total) of the open probability Pm at temperature 
Tm. The equilibrium constant Keq can be calcu-
lated via Eq. (1) and according to the variance 
formula of error propagation one has

The data points and standard errors entering Eq. 
(13) are therefore given by

Our results for the TRPV3 data are shown in 
Figure 3. The model that best fits the data is 
reciprocal in the temperature (x ¼ 1=T) and con-
tains N þ 1 ¼ 3 spline knots. The model predicts a 
temperature-dependent heat capacity difference 
ΔCpðTÞ that decreases monotonically beyond 
T � 300 [Figure 3(c)]. The resulting enthalpy 
and entropy-temperature product differences, 
ΔHðTÞ and TΔSðTÞ, are therefore nonconstant 
and vary between � 100 and þ300 [Figure 3(b)]. 
However, they mostly cancel each other out and 
give rise to a moderate free-energy difference, as 
seen in Figure 3(a).

Figure 4 displays our results for the TRPV1 
channel, where the data points fTm; ymg and 
standard errors σm were read off Figure 2c of 
the original publication. The model that best fits 
the data is reciprocal in the temperature 
(x ¼ 1=T) and has no inner knots, i.e. 
N þ 1 ¼ 2. At first this may seem somewhat 
surprising, considering the fact that the data 
are not perfectly linear in T� 1, but is essentially 
a good example of how our data analysis pack-
age avoids overfitting. Apparently, one does not 
gain sufficiently large improvements in the χ2

min 
term of Eq. (18) to warrant a more complex 
model than one with ΔCp ¼ 0 and therefore 
constant thermodynamic potentials ΔH and ΔS. 
While we are here only illustrating the use of 
our data analysis package and want to refrain 
from making scientific assessment of the results 
at this time, we would like to make note of the 
narrow temperature range in this particular data 
set, so as the readers do not conclude that we 
are definitively claiming that TRPV1 has a van-
ishing ΔCp across the physiological temperature 
range.

We can now compare our results to the out-
put of alternative data analysis methods, such 
as the thermal coefficient Q10. In Figure 5 we 
plot the enthalpies of Figures 3(b) and 4(b) next 
to predictions that arise when Eq. (9) is solved 
for ΔHðTÞ. The latter was evaluated using 
lnðQ10Þ ¼ SðT þ 10Þ � SðTÞ, where 
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Figure 3. Thermodynamic potentials predicted from a van ’t Hoff fit of TRPV3 channel data. The data are best fitted by a model that 
is reciprocal in the temperature with 3 spline knots. (a) Gibbs free energy ΔG as a function of T , calculated from data (points) and 
compared to model prediction (solid line). Shaded areas (gray) mark temperature intervals, where the trend of the cubic spline is no 
longer constrained by data points and can therefore not be trusted. (b) Enthalpy difference ΔH (blue solid line) and entropy- 
temperature product TΔS (red dashed line) as functions of T . (c) Heat capacity difference ΔCp as function of T . The temperature- 
dependence of ΔH and ΔS emerges from a nonzero ΔCp predicted by the best-fitting model.
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SðTÞ;Sðx ¼ 1=TÞ because both data sets were 
fitted via reciprocal models. Figure 5(b) demon-
strates that Q10 gives a decent estimate for the 

enthalpy whenever ΔH is independent of tem-
perature. If this is not the case [Figure 5(a)], 
then the differences can become arbitrarily 

Figure 4. Thermodynamic potentials predicted from a van ’t Hoff fit of TRPV1 channel data. The data are best fitted by a reciprocal 
model with 2 spline knots. (a-c) Same as in Figure 3, except that here a model is preferred with vanishing heat capacity difference 
ΔCp, which results in ΔH;ΔS ¼ const:.
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large, as can be seen in Figure 5(a). Note that 
the discrepancy between the spline-fitting esti-
mate and the Q10-estimate for ΔHðTÞ vanishes 
when the temperature difference entering the 
definition of Q10 goes to zero, i.e. when the 
finite-difference approximation in Eq. (9) 
becomes exact.

Conclusions

We have developed an open-access data analysis 
package [17] to reliably extract thermodynamic 
potentials and heat capacities from empirical mea-
surements of equilibrium constants at different 
temperatures. This is in line with most recent 
theoretical developments, which show that a non-
trivial heat capacity difference ΔCpðTÞ can be cru-
cial for the correct modeling of the 
thermodynamics of temperature-dependent chan-
nel gating [14]. Our package accounts for the fact 
that on physiologically relevant temperature scales 
one cannot distinguish between a linear and reci-
procal temperature dependence (see Figure 2), and 
therefore fits multiple models to the data, which 
vary in complexity (characterized by the number 
of parameters) and in the way they scale with 
temperature. A Bayesian information criterion 
[Eq. (18)] is used to select the model that best 
fits the data, while minimizing the number of 
model parameters to avoid overfitting. Our 

software can therefore be used to fit nonlinear 
van ’t Hoff plots without any ad hoc assumptions 
and outperforms conventional methods, such as 
the thermal coefficient Q10 (see Figure 5). Yet, we 
urge users to practice caution and not use our 
package to analyze data containing artifacts or 
unreasonably small error bars, because these can 
affect the resulting model selection and lead to 
faulty conclusions.

To demonstrate the use of the data analysis 
package, we applied it to measurements of equi-
librium constants for the temperature-sensitive 
TRPV1 and TRPV3 channels, respectively. For 
both data sets, we found that models with the 
functional form lnðKeqÞ ¼ f ð1=TÞ, i.e. reciprocal 
in the temperature, were best suited to fit the 
data at hand, albeit with differing complexity. 
While the fit to the TRPV1 data predicted 
ΔCp ¼ 0, and therefore a constant enthalpy and 
entropy (see Figure 4), an initially increasing 
and then monotonically decreasing ΔCpðTÞ was 
required to capture the extremely nonlinear 
trends seen in the TRPV3 data (Figure 3). 
Note that our analysis relies on the common 
assumption that the TRPV1 and TRPV3 chan-
nels can, to a first approximation, be described 
as two-state systems. Even if this assumption is 
unlikely to hold for most (if not all) TRP chan-
nels, the thermodynamic variables that can be 
extracted from our approach provide a more 

Figure 5. Comparison of enthalpy estimates obtained from van ’t Hoff fits (blue solid lines) and Q10-based analysis (red 
dashed lines). (a) For the TRPV3 channel data analyzed in Figure 3, the finite-difference approximation of the derivative with 
respect to T in Eq. (9) results in a vastly different ΔHðTÞ estimate than obtained from our spline-fitting procedure. (b) The 
van ’t Hoff fit of the TRPV1 channel data predicted a temperature-independent enthalpy, for which Q10 provides a decent 
estimate of ΔH (in this case only 3% off).
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reliable and accurate description of the tempera-
ture sensitivity of TRP channels than the results 
of a Q10-analysis or linear fits to a van ’t Hoff 
plot. In principle, a more intricate analysis 
involving multiple states can also be conducted 
(see the subsection “Extension to multi-state 
models”), but has not been implemented in our 
data analysis package for the simple reason that 
every mechanistic model would have to be 
implemented separately.

It is our belief that our data analysis tool will 
not only benefit the community of electrophysiol-
ogists studying temperature-sensitive channels, but 
also help researchers in chemistry and biochemis-
try to rigorously analyze their van ’t Hoff plots. 
Temperature-dependent enthalpies and entropies 
open up exciting new possibilities in the theoreti-
cal modeling of the kinetics and dynamics of ther-
moresponsive systems, as the associated transition 
rates between the open and closed state intuitively 
must exhibit non-Arrhenius behavior. Whether 
such generalized models are applicable to TRP 
channels should be addressed in future research.

Acknowledgments

We thank Dr. Andrés Jara-Oseguera for fruitful discussions 
and critical comments on the manuscript. The Flatiron 
Institute is a division of the Simons Foundation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Max-Planck-Gesellschaft 
(JTB) and the Simons Foundation (SMH).

ORCID

Jakob T. Bullerjahn http://orcid.org/0000-0002-2459-219X
Sonya M. Hanson http://orcid.org/0000-0001-8960-5353

References

[1] Patapoutian A, Peier AM, Story GM, et al. ThermoTRP 
channels and beyond: mechanisms of temperature sensa-
tion. Nat Rev Neurosci. 2003;4(7):529–539. doi: 10.1038/ 
nrn1141

[2] Caterina MJ, Schumacher MA, Tominaga M, et al. The 
capsaicin receptor: a heat-activated ion channel in the 
pain pathway. Nature. 1997;389(6653):816–824. doi:  
10.1038/39807

[3] McKemy DD, Neuhausser WM, Julius D. Identification 
of a cold receptor reveals a general role for TRP chan-
nels in thermosensation. Nature. 2002;416(6876):52– 
58. doi: 10.1038/nature719

[4] Peier AM, Moqrich A, Hergarden AC, et al. A TRP 
channel that senses cold stimuli and menthol. Cell. 
2002;108:705–715. doi: 10.1016/S0092-8674(02)00652-9

[5] Liu B, Hui K, Qin F. Thermodynamics of heat activation 
of single capsaicin ion channels VR1. Biophys J. 2003;85 
(5):2988–3006. doi: 10.1016/S0006-3495(03)74719-5

[6] Voets T, Droogmans G, Wissenbach U, et al. The prin-
ciple of temperature-dependent gating in cold- and heat- 
sensitive TRP channels. Nature. 2004;430(7001):748–754. 
doi: 10.1038/nature02732

[7] Cao E, Cordero-Morales JF, Liu B, et al. TRPV1 chan-
nels are intrinsically heat sensitive and negatively regu-
lated by phosphoinositide lipids. Neuron. 2013;77 
(4):667–679. doi: 10.1016/j.neuron.2012.12.016

[8] Vandewauw I, de Clercq K, Mulier M, et al. A TRP channel 
trio mediates acute noxious heat sensing. Nature. 2018;555 
(7698):662–666. doi: 10.1038/nature26137

[9] Vriens J, Voets T. Heat sensing involves a TRiPlet of ion 
channels. Br J Pharmacol. 2019;176(20):3893–3898. doi:  
10.1111/bph.14812

[10] Yonghak P, Miyata S, Kurganov E. TRPV1 is crucial 
for thermal homeostasis in the mouse by heat loss 
behaviors under warm ambient temperature. Sci Rep. 
2020;10(1):8799. doi: 10.1038/s41598-020-65703-9

[11] Clapham DE, Miller C. A thermodynamic framework for 
understanding temperature sensing by transient receptor 
potential (TRP) channels. Proc Natl Acad Sci U S A. 
2011;108(49):19492–19497. doi: 10.1073/pnas.1117485108

[12] Brauchi S, Orio P, Latorre R. Clues to understanding 
cold sensation: thermodynamics and electrophysiologi-
cal analysis of the cold receptor TRPM8. Proc Natl 
Acad Sci U S A. 2004;101(43):15494–15499. doi:  
10.1073/pnas.0406773101

[13] Cooper A. Protein heat capacity: an anomaly that 
maybe never was. J Phys Chem Lett. 2010;1 
(22):3298–3304. doi: 10.1021/jz1012142

[14] Yeh F, Jara-Oseguera A, Aldrich RW. Implications of a 
temperature-dependent heat capacity for temperature- 
gated ion channels. Proc Natl Acad Sci U S A. 2023;120 
(24):e2301528120. doi: 10.1073/pnas.2301528120

[15] Voets T. TRP channels and thermosensation. In: 
Mammalian transient receptor potential (TRP) cation 
channels. New York: Springer-Verlag; 2014. pp. 729– 
741. doi: 10.1007/978-3-319-05161-1_1.

[16] Jara-Oseguera A, Islas LD. The role of allosteric 
coupling on thermal activation of thermo-TRP chan-
nels. Biophys J. 2013;104(10):2160–2169. doi:  
10.1016/j.bpj.2013.03.055

TEMPERATURE 11

https://doi.org/10.1038/nrn1141
https://doi.org/10.1038/nrn1141
https://doi.org/10.1038/39807
https://doi.org/10.1038/39807
https://doi.org/10.1038/nature719
https://doi.org/10.1016/S0092-8674(02)00652-9
https://doi.org/10.1016/S0006-3495(03)74719-5
https://doi.org/10.1038/nature02732
https://doi.org/10.1016/j.neuron.2012.12.016
https://doi.org/10.1038/nature26137
https://doi.org/10.1111/bph.14812
https://doi.org/10.1111/bph.14812
https://doi.org/10.1038/s41598-020-65703-9
https://doi.org/10.1073/pnas.1117485108
https://doi.org/10.1073/pnas.0406773101
https://doi.org/10.1073/pnas.0406773101
https://doi.org/10.1021/jz1012142
https://doi.org/10.1073/pnas.2301528120
https://doi.org/10.1007/978-3-319-05161-1_1
https://doi.org/10.1016/j.bpj.2013.03.055
https://doi.org/10.1016/j.bpj.2013.03.055


[17] Seehttps://github.com/bio-phys/VantHoffFitting for 
a Julia implementation of our results. The code 
can be run without any prior installation in an 
interactive cloud environment.

[18] Bezanson J, Edelman A, Karpinski S, et al. Julia: a 
fresh approach to numerical computing. Siam Rev. 
2017;59(1):65–98. doi: 10.1137/141000671

[19] Schwarz G. Estimating the dimension of a model. Ann 
Stat. 1978;6(2):461–464. doi: 10.1214/aos/1176344136

[20] Nadezhdin KD, Neuberger A, Trofimov YA, et al. 
Structural mechanism of heat-induced opening of a tem-
perature-sensitive TRP channel. Nat Struct Mol Biol. 
2021;28(7):564–572. doi: 10.1038/s41594-021-00615-4

[21] Ito E, Ikemoto Y, Yoshioka T. Thermodynamic impli-
cations of high Q10 of thermoTRP channels in living 
cells. Biophysics. 2015;11:33–38. doi: 10.2142/ 
biophysics.11.33

[22] Carrasquel-Ursulaez W, Moldenhauer H, Castillo JP, et 
al. Biophysical analysis of thermosensitive TRP chan-
nels with a special focus on the cold receptor TRPM8. 
Temperature. 2015;2(2):188–200. doi: 10.1080/ 
23328940.2015.1047558

[23] Lee TCM. On algorithms for ordinary least squares 
regression spline fitting: a comparative study. J Stat 
Comput Simul. 2002;72(8):647–663. doi: 10.1080/ 
00949650213743

12 J. T. BULLERJAHN AND S. M. HANSON

https://github.com/bio-phys/VantHoffFitting
https://doi.org/10.1137/141000671
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1038/s41594-021-00615-4
https://doi.org/10.2142/biophysics.11.33
https://doi.org/10.2142/biophysics.11.33
https://doi.org/10.1080/23328940.2015.1047558
https://doi.org/10.1080/23328940.2015.1047558
https://doi.org/10.1080/00949650213743
https://doi.org/10.1080/00949650213743

	Abstract
	Introduction
	Theory
	Thermodynamic description
	Spline fitting of discrete data points
	Model selection
	Extension to multi-state models

	Results and discussion
	Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References

